If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-13800=0
a = 3; b = 2; c = -13800;
Δ = b2-4ac
Δ = 22-4·3·(-13800)
Δ = 165604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{165604}=\sqrt{4*41401}=\sqrt{4}*\sqrt{41401}=2\sqrt{41401}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{41401}}{2*3}=\frac{-2-2\sqrt{41401}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{41401}}{2*3}=\frac{-2+2\sqrt{41401}}{6} $
| j/5-2=6 | | -4(7+2x)+5=-87 | | 10x-5=21-3x109 | | 42=x7x | | 5x+30=-3x-26 | | 5(m-2)=10m+m+2-6 | | 10x-5=21-3x119 | | 7x-5=-5x+19 | | 4x–9=–3(2x+7) | | -10+q+4=10+3q | | 5+x+2=3x | | 2=t/3+6 | | r+28/5=2 | | 3x−2=8x8 | | -3(n+6)+10=-8 | | p-77=-18 | | 4x+8+3x+5+5x+11=180 | | 6x–1=6x–8 | | 12.16+0.13m=12.92-0.14 | | 15+6(2b+10)=69+13b | | 55,000-875t=41,500-500t | | –20=28–12k | | .25+2x=x+1.5 | | 9u-1=-10+10u | | 20=8+2n | | 43/10-(22/5x+51/2)=1/2(-33/5x+11/2 | | 4r+7=95 | | 364+h=7 | | k+9k-3+4=7k+3k-1+2 | | 3(n+4)=1.5(6n+4) | | 2/3(4x–1)=–22 | | -44=-10x+6=-14 |